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Abstract: Background: Non-communicable diseases (NCDs) have become a major cause of morbidity
and mortality in India. Perturbation of host–microbiome interactions may be a key mechanism by
which lifestyle-related risk factors such as tobacco use, alcohol consumption, and physical inactivity
may influence metabolic health. There is an urgent need to identify relevant dysmetabolic traits for
predicting risk of metabolic disorders, such as diabetes, among susceptible Asian Indians where
NCDs are a growing epidemic. Methods: Here, we report the first in-depth phenotypic study in
which we prospectively enrolled 218 adults from urban and rural areas of Central India and used
multiomic profiling to identify relationships between microbial taxa and circulating biomarkers
of cardiometabolic risk. Assays included fecal microbiota analysis by 16S ribosomal RNA gene
amplicon sequencing, quantification of serum short chain fatty acids by gas chromatography-mass
spectrometry, and multiplex assaying of serum diabetic proteins, cytokines, chemokines, and multi-
isotype antibodies. Sera was also analysed for N-glycans and immunoglobulin G Fc N-glycopeptides.
Results: Multiple hallmarks of dysmetabolism were identified in urbanites and young overweight
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adults, the majority of whom did not have a known diagnosis of diabetes. Association analyses
revealed several host–microbe and metabolic associations. Conclusions: Host–microbe and metabolic
interactions are differentially shaped by body weight and geographic status in Central Indians.
Further exploration of these links may help create a molecular-level map for estimating risk of
developing metabolic disorders and designing early interventions.

Keywords: geography; host–microbe interactions; glycome; dysmetabolism; multiomics; diabetes mellitus

1. Introduction

Whilst communicable diseases caused by infectious microbes continue to exert a
significant public health burden in India, existing evidence now indicates a marked shift
to non-communicable diseases (NCDs) [1–4]. The consumption of Western-type energy-
intense, nutrient poor, high glycaemic index carbohydrate enriched diets, increasingly
sedentary occupations, and low levels of recreational activity, particularly in urbanised pop-
ulations, all lead to a higher body mass index (BMI), evoking a state of chronic metabolic
inflammation, termed metainflammation [5,6]. Metainflammation contributes to the de-
velopment of many NCDs, including diabetes, which has increased rapidly in India over
the last quarter of a century, rising from 26 million prevalent cases in 1990 to 65 million in
2016 [7]. The 9th Edition of the IDF Diabetes Atlas in 2019 reported that India is currently
home to 77 million diabetics and this number is projected to soar to 134 million cases in the
next 25 years. Asian Indians have one of the highest rates of diabetes among major ethnic
groups, and the progression from prediabetes to diabetes appears to occur faster in this
population [8]. According to the National Urban Diabetes Survey, the estimated prevalence
of prediabetes is 14 per cent in India [9]. A more recent study reported that 6 in 10 adults in
large South Asian cities have either diabetes or prediabetes [10]. Concerningly, an Indian
multistate study has reported that a high percentage of the diabetes cases in the Indian
population remain undiagnosed, highlighting issues of poor awareness and detection of
diabetes [11]. An important epidemiologic aim going forward will be to identify at-risk
individuals, to facilitate an early therapeutic impact.

New multi-biomarker approaches which detect dysmetabolic traits are urgently being
sought to predict risk of metabolic diseases such as diabetes and its complications [12].
In this regard, emerging evidence leads us to conclude that metabolic syndrome, which
often accompanies obesity and hyperglycaemia, also leads to increased risk of enteric and
systemic infections [13]. A recent study suggested that this increased risk may be due to
hyperglycaemia, either genetically, chemically or diet-induced, rather than obesity itself,
which provides the mechanistic basis for intestinal barrier dysfunction [14].

Alterations in the gut microbiome, metabonome, immune system and, more recently,
the total serum and IgG N-glycome have been separately described in various dysmetabolic
states, with a predominant focus on humans residing in developed nations [15–24]. How-
ever, it remains unclear how these molecular signatures interact, and whether such interac-
tions can offer novel pathophysiological insight into the earliest stages of a dysregulated
metabolism that is often associated with an elevated BMI and insulin resistance (IR) state.

To explore this gap in knowledge, we used a multiomics strategy to deeply pheno-
type rural and urban populations in Central India, unbiasedly sampled in terms of their
metabolic state; this unbiased approach allows us to gauge a ‘real world’ cohort with-
out systematically favouring certain populations (e.g., those with metabolic syndrome)
over others. We report the first association study investigating the interplay between the
circulating immune-metabolic proteome, metabonome, glycome and gut microbiome in
previously poorly phenotyped Central Indians. Notably, we associate urban living with
multiple hallmarks of metabolic dysregulation, a critical precursor to metabolic disease.
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2. Materials and Methods
2.1. Participant Recruitment

In this observational cohort study, which was carried out during 2019, we prospec-
tively recruited adult (≥18 years of age) participants from both in- and outpatient settings
in urban and rural settings of Central India. Health records were also reviewed for each
participant where available. Basic demographic details including age, gender, geographic
location, as well as information on hospitalisation exposure, antibiotic usage during and
before (within 3 months) study recruitment, antacids usage, smoking status, co-morbidities,
toilet access, use of hand soap, and presence of domestic animals were recorded for rural
and urban participants. Body mass index (BMI) was also recorded for all participants. BMI
ranges were pre-defined using WHO Asian BMI classifications: underweight <18.5, normal
(18.5–22.9), overweight (23–24.9), pre-obese (25–29.9) and obese (≥30) categories.

Site-specific project coordinators based at the Central Indian Institute of Medical
Sciences (CIIMS), Nagpur, and MAHAN Trust, Melghat, supervised recruitment of urban
and rural participants and sample acquisition across 25 urban and 35 rural sampling
sites, respectively (Table S1). Nagpur is India’s 13th largest city by population (2.5M)
and is located at the exact centre of the Indian peninsula. Project fellows approached all
consecutive in- and outpatients at CIIMS and also processed samples received from other
participating hospitals or private clinical laboratories within a 20 km radius of Nagpur as
well as within rural Melghat, Amravati district.

In MAHAN Trust in rural Melghat, which is located approximately 293 km from
Nagpur, and is home to a community of 250,000 members of the Korku tribe, all participants
were directly recruited by community village healthcare workers and counsellors trained
by MAHAN Trust who liaised closely with project fellows from CIIMS. Stool samples were
also collected from the rural extensions within a 50 km radius from the satellite centre at
MAHAN Trust, Melghat. Here, patient recruitment and sample acquisition were facilitated
by village healthcare workers and councillors working in the subdivisional hospitals (SDH)
and public health centres. The councillors then contacted the research fellows at the rural
satellite hospital in MAHAN Trust.

In contrast to the emerging metropolis of Nagpur, which was declared open defecation
free in 2018, and is one of the cleanest and most liveable cities in India, rural agriculturalist
communities within Melghat and its rural extension zones are of lower socioeconomic
status, display high rates of illiteracy and malnutrition, and possess poor access to medical
and educational facilities. Their small hut dwellings are typically composed of mud, grass
and bamboo frames which lack an electricity or running water supply or proper sanitation
systems. They live in close proximity to their animals (chickens, goats, pigs, cows, buffalo),
often in the same one-room dwelling.

2.2. Inclusion and Exclusion Criteria

During participant selection, inclusion criteria were (i) adults aged 18 to 70 years of age
who could provide written or thumb-print consent, (ii) HIV, hepatitis B or C negative, and
(iii) not pregnant or breastfeeding. Participants who were immunosuppressed were not ex-
cluded. Immunosuppression was defined as those with cancer, receiving chemotherapy or
on prednisolone (>5 mg/d), immunomodulators (azathioprine, methotrexate, calcineurin
inhibitor) or biologics. We excluded subjects that were unable to provide a stool sample.

2.3. Ethics Statement

This study was approved by the Faculty of Medicine and Health Sciences Research
Ethics Committee at the University of Nottingham (REC no. 199-1901) and the Ethical
Committee of the Central India Institute of Medical Sciences, Nagpur. All subjects provided
verbal and written (or thumbprint) consent.
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2.4. Sample Preparation

All clinical samples were anonymised and assigned a study code number linked to
participant demographic details. Up to two faecal samples (3–5 g each) were collected
in UV sterilised dry plastic containers at the time of recruitment from each participant
and placed in a cool box. As per the standard operating procedures, all stool specimens
were stored at 4 ◦C immediately after collection to avoid enzymatic degradation prior
to genomic DNA extraction which was performed within 24 hours of sample collection.
Whole blood samples were drawn from all participants into vacutainer tubes with EDTA
as anticoagulant. These were centrifuged for 10 min at 2400× g within 30 min of being
taken. Serum was then carefully aspirated at room temperature and aliquoted accordingly
into single-use cryotubes to avoid repeated freeze–thaw cycles prior to sample storage at
−20 ◦C.

2.5. Gut Bacterial Community Profiling by 16S rRNA Gene Sequencing

Stool samples were randomised for processing and DNA was extracted from 1–1.5 g
of faeces and homogenised in lysis buffer (Tris HCl, EDTA, NaCl and SDS) using phenol-
chloroform method. Briefly, the content was centrifuged at 7000× g for 10 min. The
supernatant was then transferred to a 1.5 mL tube containing a mixture of isopropanol
and sodium acetate (5M) and incubated at −20 ◦C for 30 min. Following removal of the
supernatant the pellet was dried for about an hour. The pellet was suspended in 1X Tris
EDTA buffer (pH 8) and incubated at 65 ◦C for 15 min. An approximate equal volume
(0.5–0.7 mL) of phenol: chloroform-isoamyl alcohol (24:1) was added, mixed thoroughly
and centrifuged for 10 min at 12,000× g. The aqueous viscous supernatant was carefully
transferred to a new 1.5 mL tube. An equal volume of chloroform-isoamyl alcohol (1:1) was
added, followed by centrifugation for 10 min at 12,000× g. The supernatant was mixed
with 0.6×volume of isopropanol to aid precipitation. The precipitated nucleic acids were
washed with 75% ethanol, dried and re-suspended in 50µL of TE buffer.

Extracted DNA was quantified using a Qubit 2.0 Fluorometer (ThermoFischer Scien-
tific, Hemel Hempstead, UK), and stored at −80 ◦C pending downstream assays. Gene-
sequencing sample libraries for 16S rRNA were generated via Illumina’s 16S Metagenomic
Sequencing Library Preparation Protocol, but with some modifications. Amplification
was performed of the V1-V2 16S rRNA gene regions from the faecal DNA, using primers
as previously described [25]. Products from the index PCR reactions were cleaned and
normalised via the SequalPrep Normalization Plate Kit (Life Technologies, Carlsbad, CA,
USA), and library quantification was performed using the NEBNext Library Quant Kit
for Illumina (New England Biolabs, Ipswich, MA, USA). Sequencing data were obtained
using paired-end 300 bp chemistry on an Illumina MiSeq (Illumina Inc, San Diego, CA,
USA), with MiSeq Reagent Kit Volume 3 (Illumina Inc). Sequenced libraries included
both negative controls (PCR grade water, Roche, Basel, Switzerland) and positive controls,
with the latter using a mock community of 10 bacterial strains (LGC Group, Teddington,
UK). Processing of sequencing data was performed via the DADA2 pipeline as previously
described [26], using the SILVA bacterial database Volume 132 (https://www.arb-silva.de/
(accessed on 15 February 2021)).

A combination of R packages was used to analyse and visualise microbiota relative
abundance data. The inverse Simpson index, non-metric multidimensional scaling (NMDS)
and Analysis of Similarities (ANOSIM) were implemented in the R package ‘vegan’ [27],
using the Bray–Curtis distance metric based on normalized ASV counts. Partitioning
Around Medoids (PAM) clustering [28] on the Jensen–Shannon divergence calculated from
normalised ASV counts was used to identify two optimal community types, as defined
by best-fit silhouette score (mean silhouette score = 0.47). Linear discriminant analysis
Effect Size (LEfSe) [29] as implemented in mothur [30] was used to identify differentially
abundant genera in urban vs. rural, or high (≥23) vs. low/normal (<23) BMI score.
Kruskal–Wallis and Pearson’s chi-squared tests were run in standard R.

https://www.arb-silva.de/
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2.6. Serum Short Chain Fatty Acid Identification and Quantification

This was performed using a targeted gas chromatography-mass spectrometry protocol,
as previously described [31]. Sample analysis was performed on an Agilent 7890B GC
system coupled to an Agilent 5977A mass selective detector (Agilent, Santa Clara, CA,
USA). Patient samples were run alongside negative controls and quality control samples
(pooled aliquots of all patient samples; one run after every ten patient samples) to ensure
no source contamination and to assess for signal drift. Three injections were undertaken for
each sample. Analysis of data was performed using MassHunter software (Agilent), with
SCFA levels calculated via integration of spectra from patient samples and comparison with
freshly prepared calibration curves using SCFA standards (Merck, Darmstadt, Germany).

2.7. Serum N-Glycome Profiling
2.7.1. Experimental Design

Participant serum samples and in-house serum standards were thawed, vortexed and
centrifuged for 3 min at 12,100 g. Each sample (100 µL) was aliquoted to 2 mL 96-well
collection plates (Waters, Milford, MA, USA) following a predetermined, established
experimental design [32] which included blocking of all known sources of variation (age,
sex, diarrheal/non-diarrheal and urban/rural status) and sample randomization between
the plates to reduce experimental error. In-house serum standards were aliquoted in seven
to eight replicates per plate, to evaluate experimental error and integrity of generated
data. An aliquot (10 µL) of each sample was transferred to 1 mL 96-well collection plates
(Waters, Milford, MA, USA) for N-glycome analysis and the rest was used for isolation of
IgG followed by IgG Fc N-glycopeptide analysis.

2.7.2. Serum N-Glycome Analysis

Serum N-glycans were enzymatically released from proteins by PNGase F, fluores-
cently labelled with 2-aminobenzamide and cleaned-up from the excess of reagents by
hydrophilic interaction liquid chromatography-solid phase extraction (HILIC-SPE), as
previously described [33]. Fluorescently labelled and purified N-glycans were separated
by HILIC on a Waters BEH Glycan chromatography column, 150 × 2.1 mm i.d., 1.7 µm
BEH particles, installed on an Acquity ultra-performance liquid chromatography (UPLC)
H-class system (Waters, Wilmslow, UK), consisting of a quaternary solvent manager, sam-
ple manager and a fluorescence detector set with excitation and emission wavelengths of
250 nm and 428 nm, respectively. Obtained chromatograms were separated into 39 peaks.
The amount of N-glycans in each chromatographic peak was expressed as a percentage of
total integrated area. From 39 directly measured glycan peaks we calculated 12 derived
traits which average particular glycosylation traits such as galactosylation, sialylation and
branching across different individual glycan structures and are, consequently, more closely
related to individual enzymatic activities and underlying genetic polymorphisms. Derived
traits used: the proportion of low branching (LB); defined as di-antennary complex type
N-glycans with two N-acetylglucosamine residues attached to the core pentasaccharide,
(Man3GlcNAc2) at both the α-3 and α-6 mannose sites and high branching (HB); tri- and
tetra-antennary complex type N-glycans with three of four N-acetylglucosamine (GlcNAc)
residues attached to the core pentasaccharide. The majority of antennas are further elon-
gated by the addition of galactose, sialic acid and fucose. Additional modifications such
as the addition of bisecting GlcNAc and/or a fucose residue on the core pentasaccharide
are also possible. N-glycans, the proportion of a-, mono-, di-, tri- and tetra-galactosylated
N-glycans (G0, G1, G2, G3 and G4, respectively), and a-, mono-, di-, tri- and tetra-sialylated
N-glycans (S0, S1, S2, S3 and S4, respectively).

2.7.3. IgG Fc N-Glycopeptides Analysis

Sample preparation and analysis of IgG N-glycopeptides was done following a pre-
viously described protocol with minor changes [34]. Briefly, IgG was isolated from 90 µL
of serum samples by affinity chromatography using CIM® 96-well Protein G monolithic
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plate (BIA Separations, Ajdovščina, Slovenia). IgG N-glycopeptides were prepared by
trypsin digestion of an aliquot of IgG isolates (25 µg on average per sample) followed by
reverse-phase solid phase extraction (RP-SPE). Purified tryptic IgG N-glycopeptides were
separated and measured on nanoAcquity chromatographic system (Waters, Wilmslow, UK)
coupled to Compact Q-TOF mass spectrometer (Bruker, Bremen, Germany), equipped with
Apollo II source and operated under HyStar software version 3.2. The first four isotopic
peaks of doubly and triply charged signals, belonging to the same glycopeptide species,
were summed together, resulting in 20 Fc N-glycopeptides per IgG subclass. Predominant
allotype variant of IgG3 tryptic peptide carrying N-glycans in the Caucasian population has
the same amino acid sequence as IgG2 [35]. Therefore, IgG glycopeptides were separated
into three chromatographic peaks designated as IgG1, IgG2/3 and IgG4. Signals of interest
were normalised to the total area of each IgG subclass.

2.8. Immune and Diabetic Protein Profiling of Sera

Patient sera were analysed for the quantifications of 37 key biomarkers of inflam-
mation from the TNF superfamily proteins, IFN family proteins, Treg cytokines, and
MMPs: APRIL/TNFSF13, BAFF/TNFSF13B, sCD30/TNFRSF8, sCD163, Chitinase-3-like 1,
gp130/sIL-6Rβ, IFN-α2, IFN-β, IFN-γ, IL-2, sIL-6Rα, IL-8, IL-10, IL-11, IL-12 (p40), IL-12
(p70), IL-19, IL-20, IL-22, IL-26, IL-27 (p28), IL-28A/IFN-λ2, IL-29/IFN-λ1, IL-32, IL-34,
IL-35, LIGHT/TNFSF14, MMP-1, MMP-2, MMP-3, Osteocalcin, Osteopontin, Pentraxin-3,
sTNF-R1, sTNF-R2, TSLP, TWEAK/TNFSF12 using the Bio-Plex Pro Human Inflammation
Panel 1 (171AL001M, Bio-Rad, Hercules, CA, USA); immunoglobulins IgG1, IgG2, IgG3,
IgG4, lgA, lgM, using the Bio-Plex Pro™ Human Isotyping Panel (171A3100M, Bio-Rad);
and C-peptide, ghrelin, GIP, GLP-1, glucagon, insulin, leptin, PAI-1 (total), resistin and
visfatin, using the Bio-Plex 10 ProTM Human diabetes 10-plex immunoassay (171A7001M,
Bio-Rad), respectively. Samples were analysed in a Bio-Plex 200 System using the Bio-Plex
manager software, according to manufacturer’s instructions. The concentrations were
calculated by standard curves developed in parallel and are expressed as pg/mL for the
inflammatory biomarkers and diabetic proteins, and ng/mL for the immunoglobulins.

Glycated serum protein (GSP) levels (µmol/L), which provide a short to medium-term
assessment of glycaemia and diabetes risk [36], were assayed in sera by enzymatic assay
(Crystal Chem, Elk Grove Village, IL, USA).

2.9. Statistical Analysis

As per the manufacturer’s guidelines, all sera were assayed in duplicate in immune
(antibody and inflammation panels), diabetic protein, and GSP assays. Descriptive statistics
including median and interquartile range (IQR) are presented for demographic variables.
Student’s t-tests were used to detect differences in the abundance of microbial and im-
munometabolic features across the groups assessed. The association between the metavari-
ables and microbial taxa was assessed using Pearson’s correlation analysis. Identification
and selection of the candidate biomarkers associated with urban, rural and BMI status, to-
gether with the performance of markers, was investigated using the elastic net method (see
below) [37]. All p-values were adjusted where necessary to control for the false discovery
rate (FDR) according to the Benjamini–Hochberg method. All analyses were performed in
the R statistical computing (R version 3.4.3) environment. Statistical significance was set at
an alpha of 5% for a two-sided p-value for all analyses.

Elastic Net Machine Learning Method

We the applied elastic net (EN) machine learning method [37] to help select important
features which may discriminate between the urban and rural population, and BMI groups.
Elastic net automatically selects the best features linked with the outcome or response vari-
able from the dataset-based penalty applied, and hence provides a sparse solution [38–40].
Penalty parameters, λ (Range of λ: 0 to 1), are optimized using 10-fold cross validation.
The stronger the penalty (close to 1), the smaller the number of variables selected, while if
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the penalty is weaker (close to 0), a higher number of variables are selected. In other words,
the penalty function λ controls the trade-off between likelihood and penalty, thereby influ-
encing the variables to be selected. Elastic net employs a mixed version of penalty called
L1 (Least Absolute Shrinkage and Selection Operator also called as LASSO penalty) and
L2 penalty (Ridge penalty). The L1 penalty encourages the sparse representation, whereas
L2 stabilises the solution. The process was repeated 100 times and the features were ranked
according to their respective selection frequency associated with each run. We then selected
the first quartile from the EN-selected features over 100 runs. These selected features
were then further modeled by generating area under curve (AUC) curves. We performed
stability analysis [39] (also called a permutation analysis) after randomizing the class label
(for rural vs. urban populations). We compared a random AUC based on each iteration and
averaged over 100 iterations with the true AUC (without changing the class label). From
these calculations, we generated two AUC distributions and compared mean values of the
distributions, and generated p-values accordingly. All analyses were performed in the R
statistical computing (R version 3.4.3) environment [41] and MetaboAnalyst web tool [42].

3. Results
3.1. Characteristics of the Study Participants

Clinical and demographic characteristics of the cohort are presented in Table 1 and
geographic sites specified in Table S1. In total, 218 participants, of which 26.6% were
inpatients, were enrolled into this prospective cohort study during 2019. A survey of the
medical records of the urban cohort revealed that 10.5% of participants had diabetes melli-
tus at enrolment. No co-morbidity data were available for the rural cohort, highlighting a
lack of diagnostic hospital facilities, a general reluctance to engage with Western medicine
and a reliance on local faith healers and alternative medicines. In terms of cardiometabolic
risk factors, 24.5% were active smokers (rural n = 23 vs. urban n = 31), and over half of
the cohort were overweight (BMI ≥ 23) by Asian WHO standards. The urban Nagpurian
cohort displayed significantly higher BMIs compared to their rural counterparts (p < 0.001).

Table 1. Baseline characteristics of study population. Descriptive statistics presented as the number
of samples (n) and percentage (%) or median (interquartile range, IQR).

Characteristic Rural, n = 94 Urban, n = 124 p-Value

Age, yrs (median (IQR)) 39 (27, 53) 38 (30, 49) >0.9
Gender 0.3
Female 47 (50%) 52 (42%)
Male 47 (50%) 72 (58%)

BMI (median (IQR)) 21.0 (19.2, 22.3) 25.0 (23.5, 26.0) <0.001
BMI Class <0.001

Underweight 10 (11%) 0 (0%)
Normal 68 (72%) 20 (16%)

Overweight 12 (13%) 38 (31%)
Pre-Obese 2 (2.1%) 62 (50%)

Obese 2 (2.1%) 4 (3.2%)
Smoker 23 (24%) 31 (25%) >0.9

Hospitalized 13 (14%) 45 (36%)
Drugs 0.017

Antacid 24 (26%) 12 (9.7%)
PPI 1 (1.1%) 1 (0.8%)

Co-morbidities <0.001
Diabetes mellitus 8 (8.5%) 15 (12%)

Epilepsy 3 (3.2%) 12 (9.7%)
High cholesterol 0 (0%) 1 (0.8%)

Hypertension 0 (0%) 7 (5.6%)
Hypothyroidism 0 (0%) 1 (0.8%)
Seizure disorder 0 (0%) 1 (0.8%)

Tuberculosis 0 (0%) 1 (0.8%)
Toilet facilities 80 (85%) 124 (100%) <0.001

Hand soap 80 (85%) 124 (100%) <0.001
Domestic animals 42 (45%) 21 (17%) <0.001

Water supply <0.001
Borewell 0 (0%) 18 (15%)

Corporation water connection 6 (6.4%) 101 (81%)
Corporation water tank 78 (83%) 3 (2.4%)

Well water 10 (11%) 2 (1.6%)
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Following quality control checks, we analysed 179 fecal samples for taxonomic compo-
sition by 16S rRNA gene amplicon sequencing. Sera were profiled for relative abundance of
total serum N-glycans and IgG Fc N-glycopeptides (n = 218), detection and quantification
of short chain fatty acids (n = 218), an inflammation panel of immune proteins (n = 141),
a multi-isotype antibody panel (n = 143), glycated serum protein levels (n = 135), and a
diabetes panel (n = 47); see Figure 1A for study schematic with urban/rural sampling
numbers and Supplementary Table S2 for study metrics.
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Figure 1. The microbiota is structurally distinct in participants from rural vs. urban areas. (a) Schematic of overall study design
(n = number of urban/rural samples). (b) Diversity as determined by inverse Simpson index based on normalized ASV counts in
participants from rural vs. urban areas (Kruskall–Wallis nonparametric test, p < 0.001). (c) Non-metric multidimensional scaling
(NMDS) visualization of Bray–Curtis distance (based on normalized ASV counts) of the microbiota in participants based on
geography (rural vs. urban; purple vs. yellow). Analysis of similarities (ANOSIM) was conducted using Bray–Curtis distance,
9999 permutations. (d) Log-transformed relative abundance of significantly differential genera between participants from rural
or urban areas, as determined by Linear discriminant analysis Effect Size (LEfSe).
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3.2. Microbiota Composition Varies by Geographic-Specific Factors

Significant differences in microbiota diversity, structure, and composition were ob-
served between urban and rural participants. Overall, microbiota diversity was increased in
the rural population (Figure 1B), and ANOSIM on NMDS ordination indicated significant
separation between the two groups (Figure 1C). LEfSe identified several overrepresented
genera belonging to the Firmicutes phylum in the rural population, including significant
differences in relative abundance of Faecalibacterium, Roseburia, unclassified Lachnospiraceae
and Ruminococcaceae groups. Within Bacteroidetes, the rural microbiota was dominated by
Prevotella and Alloprevotella genera, while Bacteroides and Parabacteroides were overrepre-
sented in the urban microbiota (Figure 1D). Community type analysis using PAM clustering
revealed two major clusters, with an overrepresentation of rural samples clustering within
one cluster (69/82) compared to urban samples, which were more evenly distributed
between both clusters (56 vs. 41 samples; Pearson’s chi-squared test, p < 0.001).

BMI (defined as ‘low/normal’ <18.5/18.5–22.9 vs. ‘high’ >23) was not a significant factor
in differentiating microbiota composition or diversity; however, an unclassified Ruminococcaceae
group (Ruminococcaceae_UCG-014) was overrepresented in participants with a high BMI across
all samples and within rural participants (online Supplementary Figure S1).

3.3. Dysmetabolic Hallmarks and Urban Living

Diabetic biomarker panel profiling revealed substantially higher levels of proteins
linked to diabetes including C-peptide, insulin and leptin in the peripheral circulation of
the sampled urban population (Table 2). Accompanying serum N-glycan profiles demon-
strated glycan structural features of increased branching, galactosylation and sialylation in
the urban cohort, in line with increasing plasma N-glycome complexity typically observed
in individuals with increased risk of type 2 diabetes development [17]. Specifically, we
found a statistically significant increase in levels of high-branching, tri-and tetragalac-
tosylated glycans, tri-and tetrasialylated glycans and increase in levels of glycans with
antennary fucosylation in inhabitants of Nagpur. For IgG Fc N-glycopeptide analysis, IgG1
glycopeptides with agalactosylated and monogalactosylated glycans were detected at a
significantly higher relative abundance in the sera of tested urban inhabitants.

Table 2. Features which show significant differential responses between rural and urban cohorts are shown using two-
tailed Student’s t-test. An FDR corrected p-value is shown in the last column. Arrows (↑/↓) represent features that were
increased/decreased in the corresponding population.

Feature tstat Rural Urban p-Value (FDR
Corrected)

Serum Short-chain Fatty Acids
Caproate 6.679 ↑ ↓ 0.000000
Valerate 5.5217 ↑ ↓ 0.000001
Acetate 3.1602 ↑ ↓ 0.006598

Propionate 3.0367 ↑ ↓ 0.007375
Serum Diabetic panel

BMI −3.9651 ↓ ↑ 0.003120
C-peptide −3.4949 ↓ ↑ 0.006466

Insulin −3.0994 ↓ ↑ 0.013355
Leptin −2.9744 ↓ ↑ 0.014119

Serum IgG Fc N-Glycopeptides
IgG1 H4N4F1: IgG1 glycopeptide with monogalactosylated glycan with core

fucose −3.6748 ↓ ↑ 0.004191

IgG4 H5N4F1: IgG4 glycopeptide with digalactosylated glycan with core
fucose 3.4585 ↑ ↓ 0.004569

IgG1 H3N4F1: IgG1 glycopeptide with agalactosylated glycan with core fucose −2.9742 ↓ ↑ 0.014886
IgG4 H5N4F1S1: IgG4 glycopeptide with digalactosylated and monosialylated

glycan with core fucose 2.889 ↑ ↓ 0.014886

IgG1_H5N4F1S1: IgG1 glycopeptide with digalactosylated and monosialylated
glycan with core fucose. 2.5309 ↑ ↓ 0.033823
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Table 2. Cont.

Feature tstat Rural Urban p-Value (FDR
Corrected)

Serum Immunoglobulin isotype
IgG1 −3.5703 ↓ ↑ 0.003905
IgM 2.5608 ↑ ↓ 0.045976

Inflammation-related Protein
IFN-γ 3.077 ↑ ↓ 0.051323

Osteocalcin −3.063 ↓ ↑ 0.051323
Serum N-Glycans

S4: Tetrasialylated glycans −5.2077 ↓ ↑ 0.000004
G4: Tetragalactosylated glycans −5.1823 ↓ ↑ 0.000004

AF: Antennary fucosylation −4.7813 ↓ ↑ 0.000019
S1: Monosialylated glycans 3.9387 ↑ ↓ 0.000413
HB: High branching glycans −3.9283 ↓ ↑ 0.000413
LB: Low branching glycans 3.8475 ↑ ↓ 0.000470

S3: Trisialylated glycans −3.25 ↓ ↑ 0.003435
G2: Digalactosylated glycans 2.9324 ↑ ↓ 0.008372
G3: Trigalctosylated glycans −2.7838 ↓ ↑ 0.011686

B: Bisection (Glycans with bisecting GlcNAc) 2.403 ↑ ↓ 0.030770
HM: High mannose glycans 2.2316 ↑ ↓ 0.043612

3.4. Rural Living Associates with Contrasting Serum Immunometabolic Features

Levels of a number of short chain fatty acids (including caproate, valerate, acetate and
propionate) were significantly higher in the sera of rural inhabitants. Rural inhabitants
showed a significantly higher relative abundance of low branching, monosialylated and di-
galactosylated serum glycans, as well as a higher abundance of bisected and high mannose
serum glycans (Table 2). Analysis of IgG Fc N-glycopeptides revealed a higher relative
abundance of IgG1 and IgG4 glycopeptides with digalactosylated and monosialylated
glycans with core fucose in the circulation of rural subjects.

Geographic differences also extended to circulating immunoglobulin responses. Prin-
cipal component analysis (PCA) (Figure 2A) demonstrated a clear separation of multi-
isotype antibody responses between rural and urban cohorts. In particular, the rural cohort
displayed significantly higher levels of circulating total IgM antibodies, whereas IgG1
antibodies were significantly higher in the urban cohort (p < 0.05; Figure 2B). Correlation
analyses also focussed on studying connections between immunoglobulin responses and
SCFAs, the latter of which are known to fuel antibody responses. Here, we found that serum
2-hydroxybutyrate positively correlated with IgG4 levels in the rural cohort (p < 0.05), and
IgG4 strongly positively associated with Porphyromonas, Campylobacter, Gemella, Streptocco-
cus, Leptotrichia and Neisseria (p = 0).

3.5. Diabetic Protein-Microbe Interactions Vary by Geography

In the urban group (see online Supplementary Table S3), the strongest positive Pearson
correlations were detected between visfatin and Bacillales, Marinifilaceae, Staphylococcaeae,
Odoribacter, Macelibacteroides, Staphylococcus, Hungatella, Ruminiclostridium_6, Erysipela-
toclostridium, Acidaminococcus, and Lactobacillaceae (p < 0.0001); followed by leptin with
Actinobacteria, and Bifidobacteriales at class, family and genus. Positive correlations were
observed for GLP-1 with Escherichia/Shigella, Enterobacteriaceae, Proteobacteria and Gammapro-
teobacteria. C-peptide and insulin also positively associated with Gammaproteobacteria,
Proteobacteria and Enterobactericeae.

In contrast, in the rural group, (see online Supplementary Table S4), the strongest pos-
itive correlations were detected for GLP-1 with unclassified Erysipelotrichaceae_unclassfied,
Anaeroplasmatales at class, family and genus, and Erysipelotrichaceae_UCG.004, and for C-
peptide, with Paraprevotella, Flavonifractor, UBA1819 and Erysipelatoclostridium (p < 0.0001).
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Further significant diabetic protein–microbiota–immune correlations for the urban and
rural groups are presented in online Supplementary Tables S3 and S4, respectively.
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3.6. Differential Impact of Glycated Serum Protein Levels on Immunometabolic and Gut Bacterial Features

In subjects where glycated serum protein (GSP) concentrations were assessed (n = 135),
levels were significantly higher in overweight (BMI 23–24.9) and pre-obese (BM 25–29.9) test
subjects compared to those with normal BMI (18.5–22.9), and in urban subjects compared
to rural participants; p < 0.001 (Table S5). Across the whole cohort, high GSP levels were
associated with significantly lower circulating IgG2, IgM, caproate, and valerate levels, and
lower relative abundance of Roseburia and Dorea (p < 0.05). See Tables 3–5.

In urban BMI comparisons, circulating levels of 2-hydroxybutyrate, isobutyrate, propi-
onate, and valerate were significantly higher in overweight subjects compared to those with
normal BMI (see Supplementary Table S6; p < 0.05). Similarly, levels of isobutyrate, propi-
onate and valerate, alongside acetate were higher in pre-obese vs. normal BMI subjects (see
online Supplementary Table S7). Contrastingly, in rural-BMI group comparisons, pre-obese
subjects displayed significantly lower levels of 2-methylbutyrate, acetate, caproate, isobu-
tyrate and isovalerate, but a higher relative abundance of Collinsella, Prevotella_9, Agath-
obacter, Roseburia, Faecalibacterium, Ruminococcaceae unclassified, Ruminococcaceae_UCG.014,
Catenibacterium, Megasphaera and Mitsuokella compared to subjects with a normal BMI
(p < 0.05; see online Supplementary Table S8). In underweight rural subjects (n = 8), there
was a higher representation of Collinsella, Roseburia and Pentraxin 3 compared to the normal
BMI group (see online Supplementary Table S9).
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Table 3. Features which demonstrate differential responses between normal and low glycated serum protein (GSP)
levels (µmol/L). Low GSP = 0–199; Normal GSP = 200–285; MMP-2 = Matrix metalloproteinase-2; MMP-3 = Matrix
metalloproteinase-3; sCD163 = Soluble CD163; sIL-6Rα = Soluble interleukin 6 receptor alpha; IFN-α2 = Interferon alpha-2;
sCD30/TNFRSF8 = Tumour necrosis factor receptor superfamily member 8; Two-tailed Student’s t- test. An FDR corrected p-value
is shown in the last column. Arrows (↑/↓) represent features that were increased/decreased in the corresponding population.

Feature tstat Normal GSP (n
= 30)

Low GSP (n =
54)

p-Value (FDR
Corrected)

MMP-2 −3.5975 ↑ ↓ 0.000548
HM: High mannose glycans 2.8571 ↓ ↑ 0.005416

MMP-3 2.8315 ↓ ↑ 0.005827
sCD163 −2.7054 ↑ ↓ 0.008297
sIL-6Rα −2.6473 ↑ ↓ 0.009727
IFN-α2 −2.4229 ↑ ↓ 0.017598

IgG4 H5N4F1S1: IgG4 glycopeptide with
digalactosylated and monosialylated glycan with core

fucose
2.3389 ↑ ↓ 0.021773

Cyanobacteria −2.2579 ↑ ↓ 0.026608
Melainabacteria −2.2579 ↑ ↓ 0.026608

2-methylbutyrate −2.196 ↑ ↓ 0.030914
AF: Antennary Fucosylation −2.1194 ↑ ↓ 0.03708

Gastranaerophilales_unclassified −2.0844 ↑ ↓ 0.040231
Gastranaerophilales −2.0666 ↑ ↓ 0.041926
sCD30/TNFRSF8 −2.0552 ↑ ↓ 0.043046

Table 4. Features which demonstrate differential responses between normal and high GSP lev-
els. Normal GSP = 200–285; High GSP = 286–400; APRIL/TNFSF13 = A proliferation-inducing
ligand/Tumor necrosis factor ligand superfamily member, 13; Two-tailed Student’s t- test. Arrows
(↑/↓) represent features that were increased/decreased in the corresponding population. An FDR
corrected p-value is shown in the last column.

Feature tstat Normal GSP (n
= 30)

High GSP (n =
33)

p-Value (FDR
Corrected)

IgG2 −2.7269 ↑ ↓ 0.008335
Caproate −2.6832 ↑ ↓ 0.009373
Roseburia −2.4077 ↑ ↓ 0.019095
Valerate −2.2378 ↑ ↓ 0.028897
Dorea −2.2193 ↑ ↓ 0.030193
IgM −2.1594 ↑ ↓ 0.034761

APRIL/TNFSF13 2.141 ↓ ↑ 0.036276

Table 5. Features which demonstrate differential responses between normal and very high GSP
levels; Normal GSP = 200–285; Very high GSP = >400. Two-tailed student’s t- test. Arrows (↑/↓)
represent features that were increased/decreased in the corresponding population. An FDR corrected
p-value is shown in the last column.

Feature tstat Normal GSP (n
= 30)

Very High GSP
(n = 18)

p-Value (FDR
Corrected)

Caproate 2.4758 ↑ ↓ 0.017035
Blautia −2.0712 ↓ ↑ 0.04398

Osteopontin 2.0162 ↑ ↓ 0.049643

3.7. Multiomics Data Integration Identified Potential Biomarkers Distinguishing Urban vs. Rural Cohort

We constructed Pearson correlation-based heatmaps to reveal interactions between
microbial taxa and immunometabolic features. These were filtered by geographic status
(rural vs. urban, Figure 3). In the urban group (Figure 3B), positive associations (red circles)
were seen for tetrasiaylated and tetragalactosylated serum glycans with serum caproate.
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Negative correlations (blue circles) were seen between these same complex glycans and
Bifidobacterium, Dorea, osteocalcin and IgG4 glycopeptides with digalactosylated glycan
with core fucose. Notable clusters in the rural group (Figure 3A) included positive correla-
tions with Holdemania and Klebsiella with propionate, tetrasialylated and tetragalactosylated
serum glycans.
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We next used elastic net (EN) algorithm to identify and select the most important features
representing potential biomarker candidates distinguishing rural vs. urban (Figure 4), and
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normal BMI vs. overweight or pre-obese groups (see online Supplementary Figures S1 and S2).
We ran the model 100 times using different training sets and ranked the selected features
based on the selection frequency and chose the first quartile features. We then compared
area under the curve (AUC) value with the selected features and 1000 random permuted
data sets.
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Figure 4. (a) Principal component analysis (PCA) score plot performed on the selected omics features demonstrating
clustering of the rural vs. urban cohorts. Dots represent patients and are coloured according to the subject cohort. Ellipse
represents 95% confidence. Results are plotted according to the Principal component-1 (PC1) and Principal component-2
(PC2) scores, with the percent variation of the cohort explained by the respective x and y axes. (b) Permutation test to
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(p < 0.05) heatmap of the elastic net selected features is shown for urban samples. (d) Significant Pearson correlation
(p < 0.05) heatmap of the elastic net selected features is shown for rural (n = 94) samples.
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We identified multiple distinguishing features across the rural vs. urban groups and
present their frequency in online Supplementary Table S10. We show significance levels
and directionality of response for identified discriminatory features in Figure 5. Using
those features, we found an AUC value of 0.90 between urban vs. rural population using
logistic regression (Figure 4B).
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To integrate and explore associations between the selected features using the elastic
net method, we generated heatmap plots (correlation method based) for urban and rural
groups, as shown in Figures 4C and 4D, respectively. As a representative example, the
most important rural classifiers in EN were serum caproate and relative abundance of two
taxa: Elusimicrobium and Succinivibrio. Caproate positively correlated with Alloprevotella
and serum IgG1 and Succinivibrio with osteocalcin, Prevotella and Prevotellaceae.

For the BMI EN group comparisons, features which could distinguish between
overweight and pre-obese subjects, and those with normal BMI, are displayed in on-
line Supplementary Tables S11 and S12. PCA analysis and AUC values are displayed in
Supplementary Figures S2 and S3. In particular, Dialister was significantly underrepre-
sented in the pre-obese group compared to the group with normal BMI; p < 0.036.
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4. Discussion

This study is the first integrative omics-based population study in which baseline gut
bacterial, as well as systemic immunometabolic and glycomic traits, have been captured
in geographically divergent populations in Central India. Strikingly, our findings identify
a constellation of biomolecular traits that associate with metabolic dysregulation. These
are principally seen in unselected urbanised populations without known diabetes. Al-
though there is now substantial evidence connecting the gut microbiome to physiological
parameters related to metabolic disorders such as diabetes [24], very few deep phenomic
studies have been undertaken in Asian populations to obtain a better understanding of
the biological processes associated with both healthy individuals and those at potential
risk of developing diabetes. Identification of individuals at higher risk of developing
diabetes is of great importance as early interventions may delay or even prevent overt
diabetes. By unravelling and understanding the immunometabolic interplay between gut
microbiome and the host, individualised therapeutic strategies including novel prebiotics,
probiotics, synbiotics, and postbiotics could be explored to prevent or treat cardiometabolic
disorders [24,43].

Several observational studies have indicated that obesity, estimated by BMI and an
insulin resistance state, is a very important risk factor for T2DM [44–46]. Since variations in
glucose metabolism are known to directly affect glycosylation, we studied serum N-glycan
profiles and observed a more complex glycophenotype, that has previously been reported
to be associated with a higher risk of developing T2DM and poorer regulation of blood
sugar levels [18], in the urban population group. These pathogenic complex glycans
(tetragalactosylated and tetrasialylated glycans) positively correlated with serum caproate
in the urban population, and Holdemania and Klebsiella in the rural population, suggesting
that these serum metabolites and genera are potentially diabetogenic. Similarly, circulating
IgG N-glycopeptide profiles revealed a higher relative abundance of pro-inflammatory IgG
glycoforms (IgG1 glycopeptides with agalactosylated glycans) in urban participants, which
is consistent with that seen in other inflammatory diseases [19]. It has been suggested that
agalactosylated IgG species have an enhanced capacity to activate the complement system
via the lectin pathway, thereby contributing to the development of inflammation as an
underlying pathological mechanism of autoimmune diseases [19]. In contrast, C -peptide,
GIP, insulin and leptin correlated negatively with the anti-inflammatory gut commensal
Faecalibacterium, a beneficial microbe which produces SCFAs [47–49].

Analysis of the faecal taxonomic compositional profiles revealed a dominant preva-
lence of Prevotella and Alloprevotella genera in rural microbiota and overrepresentation
of Bacteroides and Parabacteroides in the urban microbiota, a finding substantiated by our
earlier microbiome observations in Central India [50].

We observed geographic-specific variation in immunoglobulin levels, which may be
due to as yet unidentified genetic and environmental factors. We surmise that frequent
exposure to a wide range of infectious agents, and other environmental stressors in the rural
cohort, may have skewed the humoral response towards IgM to help protect the host from
invading pathogens not previously encountered. However, there is mounting evidence
that natural IgM antibodies also contribute to critical innate immune functions involved in
the maintenance of tissue homeostasis, including augmenting the clearance of apoptotic
cells and mediating specific anti-inflammatory signaling pathways [51,52]. Higher levels of
IgG in the urban cohort could reflect (meta)inflammation-associated immunosenescence, in
which there is a shift towards immunoglobulins being produced by naive B cells (IgD, IgM)
to immunoglobulin produced my memory B cells (IgG, IgA) [51,52]. The presence of a
higher burden of diabetic-related proteins and a complex glycophenotype in the circulation
of urban populations is consistent with MetS phenotype, which in younger adults may be a
sign of premature ageing [53]. Thus, preventing and treating MetS and cardiovascular disease
would be useful in promoting normal ageing. These findings are also in keeping with the
prevalence of type 2 diabetes mellitus and metabolic syndrome which strongly associate with
urban residency in Southern Asia and India, respectively [54,55]. We previously demonstrated
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that FMT for successful recurrent Clostridioides difficile associates with a reduction in the
complexity of serum N-glycosylation profiles, which is mainly driven through a significant
reduction in the relative abundance of high branching, tetragalactosylated and trisialylated
glycans [56]. We therefore infer that faecal microbiota-based interventions may be useful in
helping to reverse a complex glycophenotype, which may lead to improved metabolic health.

We also detected geographic-specific variation in levels of serum SCFAs which was
significantly higher in the rural cohort. This particular observation has been reported in
other studies where, compared to industrial human microbiomes, non-industrial gut mi-
crobiomes show greater diversity of genes involved in complex carbohydrate metabolism,
and demonstrate higher amounts of SCFAs in stool [57,58]. These trends have been linked
to plant-based diets rich in fibers, infrequent consumption of highly processed foods, and
low exposure to pharmaceutical drugs, such as antibiotics, in non-industrialised popula-
tions [59]. Of note, we observed a positive correlation between circulating levels of IgG1
and caproate and valerate in the rural cohort, whereas a negative correlation was seen for
caproate and IgG1 for the urban cohort. The former observation is supported by evidence
which shows that short SCFAs function as commensal-derived stimulators of host antibody
responses, by accelerating cellular metabolism and regulating gene expression to promote
B cell differentiation into antibody-producing cells [60]. It remains unclear why caproate
was found to negatively correlate with IgG1 in the urban population.

In terms of study limitations, not all our omics data sets were complete, a limitation
which arose due to small volume of blood samples (2 mL) permitted to be collected. We
were unable to acquire fasting blood samples for GSP and diabetes panel measurements
and did not assess fasting blood glucose or HbA1C levels, again due to considerable
practical challenges imposed by working in under-resourced and remote areas of Central
India. For this same reason, we could not assess dietary or genetic effects which are likely
to be important drivers of metabolic health. Moreover, we are mindful that our study
findings are largely associative and not causal and, thus, will require a follow-on validation
cohort study to assess their translational potential. Future work should focus on designing
larger longitudinal meta-omics studies to decipher host–microbe interactions in health and
disease using multi-ethnic cohorts.

5. Conclusions

In conclusion, we present multi-level evidence which suggests that urban living, rather
than an elevated BMI, drives dysmetabolic phenotypes in young urban and rural populations
in Central India. These findings start to deconvolute the complex interaction between the envi-
ronment, gut microbiota, immunometabolism and dysmetabolism in a non-Western population.
Our observations may serve as a launchpad for novel approaches to prediction and intervention
to minimize the risk of T2DM within these vulnerable populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9071485/s1, Table S1: Sampling sites from towns and villages in rural Melghat,
Amravati district, sub-divisional hospitals (SDH) and public health centres (PHC), and urban Nagpur
district, Maharashtra state, India. Table S2: Study metrics (microbial and immunometabolic) Table S3:
Pearson correlation coefficients correlating diabetic proteins with microbiota and molecular features
in urban cohort. A corrected p-value was obtained from the correlation test. Table S4: Pearson
correlation coefficients correlating diabetic proteins with microbiota and molecular features in rural
cohort. A corrected p-value was obtained from the test. Table S5: Glycated serum protein levels (GSP;
µmol/L). GSP levels were categorized into low, normal, high or very high categories and assessed by
BMI, gender and geography. Low GSP = 0–199; Normal GSP = 200–285; High GSP = 286–400; Very
high GSP = >400. BMI ranges were pre-defined using WHO Asian BMI classifications: underweight
<18.5, normal (18.5–22.9), overweight (23–24.9), pre-obese (25–29.9) and obese (≥30) categories.
Number of samples and percentage is represented. A chi-square test of independence was performed
and a corrected p-value was obtained from the test. Table S6: Urban BMI group comparisons showing
differential features in normal BMI vs. overweight groups. BMI ranges were pre-defined using WHO
Asian BMI classifications: underweight <18.5, normal (18.5–22.9), overweight (23–24.9), pre-obese
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(25–29.9) and obese (≥30) categories. Median and interquartile range (IQR). Kruskal–Wallis test (for
continuous data) or chi-square test of independence (for ordinal data) and corrected p-values shown.
Table S7: Urban BMI group comparisons showing differential features in normal BMI vs. pre-obese
groups. BMI ranges were pre-defined using WHO Asian BMI classifications: normal (18.5–22.9); pre-
obese (25–29.9) categories. Median and interquartile range (IQR). Kruskal–Wallis test (for continuous
data) or chi-square test of independence (for ordinal data) and corrected p-values shown. Table S8:
Rural-BMI group comparisons showing differential features in normal BMI vs. pre-obese groups.
BMI ranges were pre-defined using WHO Asian BMI classifications: normal (18.5–22.9); pre-obese
(25–29.9) categories. Median and interquartile range (IQR). Kruskal–Wallis test (for continuous
data) or chi-square test of independence (for ordinal data) and corrected p-values shown. Table S9:
Rural-BMI group comparisons showing differential features in normal BMI vs. underweight groups.
BMI ranges were pre-defined using WHO Asian BMI classifications: underweight <18.5; normal
(18.5–22.9) categories. Median and interquartile range (IQR). Kruskal–Wallis test (for continuous
data) or chi-square test of independence (for ordinal data) and corrected p-values shown. Table S10:
Elastic net selected frequency of all the features for urban vs. rural group with rankings in decreasing
order over 100 iterations. Table S11: Elastic net selected frequency of all the features for normal
vs. overweight groups with rankings in decreasing order over 100 iterations. Table S12: Elastic net
selected frequency of all the features for normal vs. pre-obese groups with rankings in decreasing
order over 100 iterations. Figure S1: Log-transformed relative abundance of significantly differential
genera between participants with high (≥23) or low/normal (<23) BMI score in rural and/or urban
groups, as determined by Linear discriminant analysis effect size (LEfSe). Ruminoccaceae (group UCG-
014) was significantly different in comparisons using both all samples and within urban samples
alone. Figure S2: A) Principal component analysis (PCA) score plot performed on the overweight
vs. normal population demonstrating clustering of subjects within samples. BMI ranges were
pre-defined using WHO Asian BMI classifications: underweight normal (18.5–22.9); overweight
(23–24.9) categories. PCA analysis used five selected discriminatory features (IFN-gamma, C-peptide,
Lachnospira, Bifidobacterium, Lachnoclostridium) between normal vs. overweight using elastic net
analysis. Overweight samples (in green) are more dispersed compared to the normal samples (in red).
B) Area under the curve (AUC) is shown using the logistic regression method and five discriminatory
features from the elastic net method. A corresponding confidence interval is also calculated as a
shaded area. Figure S3: A) Principal component analysis (PCA) score plot performed on the pre-
obese vs. normal population demonstrating clustering of subjects within samples. BMI ranges were
pre-defined using WHO Asian BMI classifications: normal (18.5–22.9); pre-obese (25–29.9) categories.
PCA analysis used twelve selected discriminatory features (Prevotellaceae_NK3B31_group, Dialister,
Glucagon, C-peptide, Prevotella_2, Antennary fucosylation (AF), CAG-56, Muribaculaceae_unclassified,
Haemophilus, Sutterella, Treponema_2, Gastranaerophilales_unclassified) between Normal vs. Pre-Obese
using elastic net analysis. Pre-Obese (in green) and normal BMI samples (in red) seem to be separating
from each other. B) Area under the curve (AUC) is shown using the logistic regression method and
twelve discriminatory features from the elastic net method. A corresponding confidence interval is
also calculated as a shaded area.
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32. Ugrina, I.; Campbell, H.; Vučković, F. Laboratory Experimental Design for a Glycomic Study. In High-Throughput Glycomics and
Glycoproteomics; Lauc, G., Wuhrer, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1503, pp.
13–19.
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